A Study on the Effect of Hydrogen Gas Explosion in a Cylinder Cabinet for Semiconductors on the Protective Wall

Author:

Min Mimi,Lee Kwangho,Jung SeunghoORCID

Abstract

In the semiconductor industry, hydrogen is used with many other hazardous and dangerous substances with flammable, toxic, and corrosive properties. In order to safely handle them, convenient-to-use gas cabinets are often required. As known well, hydrogen is highly flammable and explosive, and risk analysis needs to safely use the gas in the cabinets. In this study, overpressure and impact according to various gas cabinet conditions were measured when hydrogen leaks in the gas cabinet, and the effect of overpressure on the protective wall was simulated. For the research, a demonstration experiment was conducted by custom manufacturing a gas cylinder cabinet identical to the standard used in the field, and the protection performance analysis was performed by reverse-engineering it through 3D scanning. As a result of the demonstration experiment, the maximum pressure at the time of hydrogen gas explosion in the gas cylinder cabinet was measured at 0.3 bar. After calculating the detonation pressure propagation profile using the TNT equivalence method, the protective performance of the protective wall was confirmed using AUTODYN. The maximum stress of the concrete and the maximum stress of the reinforcing bar due to the explosion in the gas cylinder cabinet were calculated to be 30.211 MPa and 112.88 MPa, respectively, which do not exceed the tensile strength of concrete and the yield strength of the reinforcing bar. This result is expected to be of great help to the development of the semiconductor industry by suggesting the rationale for mitigating the firewall when changing the semiconductor layout.

Funder

Korea Ministry of Environment

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3