Repeated Sieving for Prediction Model Building with High-Dimensional Data

Author:

Liu Lu1,Jung Sin-Ho1ORCID

Affiliation:

1. Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA

Abstract

Background: The prediction of patients’ outcomes is a key component in personalized medicine. Oftentimes, a prediction model is developed using a large number of candidate predictors, called high-dimensional data, including genomic data, lab tests, electronic health records, etc. Variable selection, also called dimension reduction, is a critical step in developing a prediction model using high-dimensional data. Methods: In this paper, we compare the variable selection and prediction performance of popular machine learning (ML) methods with our proposed method. LASSO is a popular ML method that selects variables by imposing an L1-norm penalty to the likelihood. By this approach, LASSO selects features based on the size of regression estimates, rather than their statistical significance. As a result, LASSO can miss significant features while it is known to over-select features. Elastic net (EN), another popular ML method, tends to select even more features than LASSO since it uses a combination of L1- and L2-norm penalties that is less strict than an L1-norm penalty. Insignificant features included in a fitted prediction model act like white noises, so that the fitted model will lose prediction accuracy. Furthermore, for the future use of a fitted prediction model, we have to collect the data of all the features included in the model, which will cost a lot and possibly lower the accuracy of the data if the number of features is too many. Therefore, we propose an ML method, called repeated sieving, extending the standard regression methods with stepwise variable selection. By selecting features based on their statistical significance, it resolves the over-selection issue with high-dimensional data. Results: Through extensive numerical studies and real data examples, our results show that the repeated sieving method selects far fewer features than LASSO and EN, but has higher prediction accuracy than the existing ML methods. Conclusions: We conclude that our repeated sieving method performs well in both variable selection and prediction, and it saves the cost of future investigation on the selected factors.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3