Detection of Stress in Cotton (Gossypium hirsutum L.) Caused by Aphids Using Leaf Level Hyperspectral Measurements

Author:

Chen Tingting,Zeng Ruier,Guo Wenxuan,Hou Xueying,Lan Yubin,Zhang Lei

Abstract

: Remote sensing can be a rapid, accurate, and simple method for assessing pest damage on plants. The objectives of this study were to identify spectral wavelengths sensitive to cotton aphid infestation. Then, the normalized difference spectral indices (NDSI) and ratio spectral indices (RSI) based on the leaf spectrum were obtained within 350–2500 nm, and their correlation with infestation were qualified. The results showed that leaf spectral reflectance decreased in the visible range (350–700 nm) and the near-infrared range (NIR, 700–1300 nm) as aphid damage severity increased, and significant differences were found in blue, green, red, NIR and short-wave infrared (SWIR) band regions between different grades of aphid damage severity. Decrease in Chlorophyll a (Chl a) pigment was more significant than that in Chlorophyll (Chl b) in the infested plants and the Chl a/b ratio showed a decreasing trend with increase in aphid damage severity. The sensitive spectral bands were mainly within NIR and SWIR ranges. The best spectral indices NDSI (R678, R1471) and RSI (R1975, R1904) were formulated with these sensitive spectral regions through reducing precise sampling method. These new indices along with 16 other stress related indices compiled from literature were further tested for their ability to detect aphid damage severity. The two indices in this study showed significantly higher coefficients of determination (R2 of 0.81 and 0.81, p < 0.01) and the least RMSE values (RMSE of 0.50 and 0.49), and hence have potential application in assessing aphid infestation severity in cotton.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3