Biocrude Production from Hydrothermal Liquefaction of Chlorella: Thermodynamic Modelling and Reactor Design

Author:

Qian Lili,Ni Jun,Xu Zhiyang,Yu Bin,Wang Shuang,Gu Heng,Xiang Dong

Abstract

Hydrothermal liquefaction can directly and efficiently convert wet biomass into biocrude with a high heating value. We developed a continuous hydrothermal liquefaction model via Aspen Plus to explore the effects of moisture content of Chlorella, reaction pressure and temperature on thermodynamic equilibrium yields, and energy recoveries of biocrude. We also compared the simulated biocrude yield and energy recoveries with experiment values in literature. Furthermore, vertical and horizontal transportation characteristics of insoluble solids in Chlorella were analyzed to determine the critical diameters that could avoid the plugging of the reactor at different flow rates. The results showed that the optimum moisture content, reaction pressure, and reaction temperature were 70–90 wt%, 20 MPa, and 250–350 °C, respectively. At a thermodynamic equilibrium state, the yield and the energy recovery of biocrude could be higher than 56 wt% and 96%, respectively. When the capacity of the hydrothermal liquefaction system changed from 100 to 1000 kg·h−1, the critical diameter of the reactor increased from 9 to 25 mm.

Funder

Natural Science Foundation of Jiangsu Province, China

Natural Science Research of Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3