Affiliation:
1. Guangxi Earthmoving Machinery Collaborative Innovation Center, Guangxi University of Science and Technology, Liuzhou 545006, China
2. School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
Abstract
Environmental pollution caused by marine engines fueled with fossil fuels is a matter of growing significance. The search for renewable and clean energy sources and improvements in the way fossil fuels are burnt aims to reduce the environmental impact of these engines. For this purpose, fatty acid methyl esters were produced from pure canola oil using KOH-assisted methanol-based transesterification with a maximum yield of 90.68 ± 1.6%. The marine engine’s model was created with CONVERGE software, followed by experimental verification. This paper examines the blended fuel characteristics of a diesel engine with biodiesel blends (0%, 5%, 10%, and 15%) at different loads of engines (50%, 75%, and 100%). It also explores the variation in these characteristics of B10 (10% biodiesel–diesel blends) at three different load conditions and four different EGR rates (0%, 5%, 10%, and 15%). The results indicate that the addition of biodiesel to diesel fuel reduces CO, HC, and soot emissions, while increasing NOx emissions. Additionally, the EGR rate decreases NOx emissions but results in higher levels of soot, CO, and HC emissions. Finally, response surface methodology was used to elicit the engine’s characteristics. It was determined that the optimum experimental operating conditions were 100% engine load, 6.9% biodiesel addition, and 7.7% EGR. The corresponding BTE, BSFC, NOx, and HC emissions were 38.15%, 282.62 g/(kW-h), 274.38 ppm, and 410.37 ppm, respectively.
Funder
Guangxi Keb&D Program
Natural Science Foundation of Guangxi