Uncertainty Quantification of Engineering Parameters for a Nuclear Reactor Loaded with Dispersed Fuel Particles

Author:

Li Yukun12,Chen Zhenping12,Yang Chao12,Huang Guocai12,Gao Kekun12,Sun Aikou12,Liu Chengwei12,Wu Zhiqiang12

Affiliation:

1. School of Nuclear Science and Technology, University of South China, Hengyang 421001, China

2. Key Lab of Advanced Nuclear Energy Design and Safety, Ministry of Education, University of South China, Hengyang 421000, China

Abstract

Owing to their high intrinsic safety, dispersed fuel particles are an important fuel pattern for fourth-generation nuclear reactors. Due to the unique cladding layers and the random dispersion characteristics, dispersed fuel particles significantly differ from pressurized water reactors regarding operation-induced uncertainty. This study quantitatively analyzed overall uncertainty while considering a random distribution of dispersed fuel particles, material thickness, and fuel enrichment. The results demonstrated that, for all packing fractions, the uncertainty induced by the random dispersion of dispersed fuel particles was below 0.03%. For every packing fraction, the differences between the results obtained by the regular and the random distribution models increased, and then decreased, until reaching its maximum (1.297%) at 15%. Keff decreased as the radius of the UO2 kernel increased; Keff increased as the thickness of the cladding layer increased; the uncertainty of Keff was 1.003% when a random distribution of particles, material thickness, and fuel enrichment were taken into consideration; the uncertainty of the power distribution of reactor core assemblies was maximized (1.495%) at the edge of the reactor core. Quantitative analysis of uncertainty provides references for the optimization of design and safety margin analysis for reactors.

Funder

National Natural Science Foundation of China Youth Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3