Active Fault-Locating Scheme for Hybrid Distribution Line Based on Mutation of Aerial-Mode Injected Pulse

Author:

Jiang Zhuang1ORCID,Zeng Xiangjun1,Liu Feng1,Yu Kun1,Bi Lanxi1,Wang Youpeng1

Affiliation:

1. State Key Laboratory of Disaster Prevention & Reduction for Power Grid, Changsha University of Science and Technology, Changsha 410114, China

Abstract

Due to the overlap of initial traveling wave signals, the traveling wave propagation process in hybrid distribution lines is complicated to analyze. The most significant challenge posed by the traditional passive traveling wave-locating method for hybrid distribution lines lies in identifying the fault section and distinguishing the reflected wave from the fault point or the hybrid connection points. Based on this approach, with the application of the aerial-mode component of the pulse signal generated at the fault point, a fault-section-identification and fault-locating scheme for hybrid distribution feeders with active pulse injection is proposed. When power in a line is cut after a single-to-line ground (SLG) fault occurs, the same pulse is injected into the three phases from the neutral point of the coupling capacitor bank to construct the zero-mode component, which propagates to the SLG fault three-phase asymmetrical point, producing an aerial-mode component that is reflected back to the first end of the line. With the application of the arrival time of an aerial-mode wavefront, it is simple to locate the SLG fault for arbitrary forms of hybrid lines. The simulation results confirm the feasibility of the fault-locating scheme under different feeders, different fault locations, and fault resistances. The results of the experiments confirm the high practical value of the proposed method.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

the Hunan Provincial Innovation Foundation for Postgraduate

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3