Non-Integrated and Integrated On-Board Battery Chargers (iOBCs) for Electric Vehicles (EVs): A Critical Review

Author:

Nasr Esfahani Fatemeh1,Darwish Ahmed12ORCID,Ma Xiandong1ORCID,Twigg Peter2ORCID

Affiliation:

1. School of Engineering, Lancaster University, Lancaster LA1 4YW, UK

2. School of Engineering, Faculty of Engineering and Digital Technologies, University of Bradford, Bradford BD7 1DP, UK

Abstract

The rising Greenhouse Gas (GHG) emissions stemming from the extensive use of automobiles across the globe represent a critical environmental challenge, contributing significantly to phenomena such as global warming and the deterioration of air quality. To address these challenges, there is a critical need for research and development in electric vehicles (EVs) and their associated charging infrastructure, including off-board and on-board chargers (OBCs). This paper aims to bridge the gaps in existing review literature by offering a comprehensive review of both integrated and non-integrated OBCs for EVs, based on the authors’ knowledge at the time of writing. The paper begins by outlining trends in the EV market, including voltage levels, power ratings, and relevant standards. It then provides a detailed analysis of two-level and multi-level power converter topologies, covering AC-DC power factor correction (PFC) and isolated DC-DC topologies. Subsequently, it discusses single-stage and two-stage non-integrated OBC solutions. Additionally, various categories of integrated OBCs (iOBCs) are explored, accompanied by relevant examples. The paper also includes comparison tables containing technical specifications and key characteristics for reference and analysis.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regenerative Braking for EVs Using a Brushless DC Motor and Multi-Level Bidirectional Traction Converter;2024 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE);2024-08-06

2. A Review of Modular Electrical Sub-Systems of Electric Vehicles;Energies;2024-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3