Effects of an Owl Airfoil on the Aeroacoustics of a Small Wind Turbine

Author:

Sesalim Dean1ORCID,Naser Jamal1

Affiliation:

1. Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

Abstract

Aerodynamic noise emitted by small wind turbines is a concern due to their proximity to urban environments. Broadband airfoil self-noise has been found to be the major source, and several studies have discussed techniques to reduce airfoil leading-edge and trailing-edge noises. Reduction mechanisms inspired by owl wings and their airfoil sections were found to be most effective. However, their effect/s on the tip vortex noise remain underexplored. Therefore, this paper investigates the effects of implementing an owl airfoil design on the tip vortex noise generated by the National Renewable Energy Laboratory (NREL) Phase VI wind turbine to gain an understanding of the relationship, if any, between airfoil design and the tip vortex noise mechanism. Numerical prediction of aeroacoustics is employed using the Ansys Fluent Broadband Noise Sources function for airfoil self-noise radiation. Detailed comparisons and evaluations of the generated acoustic power levels (APLs) for two distinguished inlet velocities were made with no loss in torque. Although the owl airfoil design increased the maximum generated APL by the baseline model from 105 dB to 110 dB at the lower inlet velocity, it significantly reduced the surface area generating the noise, and reduced the maximum APL generated by the baseline model by 4 dB as the inlet velocity increased. The ability of the owl airfoil to mitigate the velocity effects along the span of the blade was found to be its main noise reduction mechanism.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3