Efficient Design of Battery Thermal Management Systems for Improving Cooling Performance and Reducing Pressure Drop

Author:

Chen Kai12ORCID,Yang Ligong1,Chen Yiming1,Wu Bingheng3,Song Mengxuan45

Affiliation:

1. Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

2. Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments, China University of Mining & Technology, Xuzhou 221116, China

3. School of Mechanical and Electrical Engineering, Guangzhou Railway Polytechnic, Guangzhou 511300, China

4. Shanghai Key Laboratory of Engineering Materials Application and Evaluation, School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China

5. Shanghai Thermophysical Properties Big Data Professional Technical Service Platform, Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai 201209, China

Abstract

The air-cooled system is one of the most widely used battery thermal management systems (BTMSs) for the safety of electric vehicles. In this study, an efficient design of air-cooled BTMSs is proposed for improving cooling performance and reducing pressure drop. Combining with a numerical calculation method, a strategy with a varied step length of adjustments (∆d) is developed to optimize the spacing distribution among battery cells for temperature uniformity improvement. The optimization results indicate that the developed strategy reduces the optimization time by about 50% compared with a strategy using identical ∆d values while maintaining good performance of the optimized system. Furthermore, the system’s pressure drop does not increase after the spacing optimization. Based on this characteristic, a structural design strategy is proposed to improve the cooling performance and reduce the pressure drop simultaneously. First, the appropriate flow pattern is arranged and the secondary outlet is added to reduce the pressure drop of the system. The results show that the BTMS with U-type flow combined with a secondary outlet against the original outlet can effectively reduce the pressure drop of the system. Subsequently, this BTMS is further improved using the developed cell spacing optimization strategy with varied ∆d values while the pressure drop is fixed. It is found that the final optimized BTMS achieves a battery temperature difference below 1 K for different inlet airflow rates, with the pressure drop being reduced by at least 45% compared with the BTMS before the optimization.

Funder

National Natural Science Foundation of China

Project of Shanghai Municipal Science and Technology Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3