An Experimental Study on Concrete and Geomembrane Lining Effects on Canal Seepage in Arid Agricultural Areas

Author:

Han XudongORCID,Wang Xiugui,Zhu Yan,Huang Jiesheng,Yang Liqing,Chang Zhifu,Fu Feng

Abstract

Canal lining is commonly used to reduce seepage loss and increase water use efficiency. However, few studies have quantitatively estimated the seepage control effects of different lining materials under different service times. Ponding tests were conducted on the same canal section with four different lining statuses to investigate the canal lining effect on seepage control and its impact factors in arid areas. The cracks and holes in different lining materials were surveyed, and the canal seepage rates under the four test treatments were calculated by monitoring the water level change in the canal. The results show that the cracks in the joints of the two precast concrete slabs and holes in the geomembrane, which are located 0.25 m above the canal bottom on two sides of the canal, are responsible for the increased seepage loss. The new concrete and geomembrane lining combination reduces seepage by 86% compared with no lining, while seepage can be reduced by 68% using the concrete and geomembrane lining combination after three service years, and the amount decreases to 11% by using geomembrane lining with a three year service time. Based on the experiment and literature, a statistical relationship between the seepage reduction and lining service time was established, which provided a possible and easy way to estimate seepage losses from lined canals and improve the estimation accuracy using an empirical formula. Without considering the service time lining effect, the seepage loss is underestimated by 58%, and the canal water use efficiency is overestimated.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3