Plasmasphere Refilling after the 1 June 2013 Geomagnetic Storm

Author:

Del Corpo Alfredo1ORCID,Vellante Massimo2ORCID

Affiliation:

1. Environment Department, Istituto Nazionale di Geofisica e Vulcanologia, Viale Crispi 43, 67100 L’Aquila, Italy

2. Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy

Abstract

Plasma content and distribution are key parameters in the dynamics of the inner magnetosphere. The plasmasphere contributes, for the most part, to the plasma mass density, and its properties are very dependent on the history of the magnetosphere and geomagnetic activity. In this work, we investigated plasmasphere dynamics and plasmasphere–ionosphere coupling, focusing on the refilling process that followed the geomagnetic storm that occurred on 1 June 2013. The equatorial plasma mass density used to evaluate the refilling rates was remotely sensed by observation of the field line resonance (FLR) frequencies of the geomagnetic field, driven by ultra-low-frequency magnetic waves. The FLR frequencies were retrieved by performing an analysis of signals detected by several station pairs of the European quasi-Meridional Magnetometer Array. We estimated the rate at which the refilling process occurred, concentrating on both the diurnal and the day-to-day refilling rates. The estimated contraction rate during the main phase of the storm was higher than ∼3.5 REd−1, while the average expansion rate was ∼0.4 REd−1. We investigated the radial dependence of the refilling rates, using a novel approach based on fit plasma mass density profiles, and we related their variation to the plasmasphere boundary layer and the zero-energy Alfvén boundary. We found evidence supporting the idea that flux tubes mapping in the region between these two boundaries experience an enhanced refilling process.

Funder

Italian MIUR-PRIN

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Global Maps of Plasmaspheric Erosion and Refilling for Varying Geomagnetic Conditions;Journal of Geophysical Research: Space Physics;2024-09

2. Automatic detection of field line resonance frequencies in the Earth’s plasmasphere;Rendiconti Lincei. Scienze Fisiche e Naturali;2023-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3