The Study of the Lithospheric Magnetic Field over Xinjiang and Tibet Areas Based on Ground, Airborne, and Satellite Data

Author:

Feng Yan12,Nasir Abbas3,Li Yijun1,Zhang Jinyuan1,Zhang Jiaxuan1,Huang Ya2

Affiliation:

1. Institute of Space Weather, School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China

2. State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190, China

3. School of Electronic and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

Combined with the ground, airborne, and CHAMP satellite data, the lithospheric field over Xinjiang and Tibet is modeled through the three-dimensional Surface Spline (3DSS) model, Regional Spherical Harmonic Analysis (RSHA) model, and CHAOS-7.11 model. Then, we compare the results with the original measuring data, NGDC720, LCS-1, and the newest SHA model with the degree to 1000 (SHA1000). Moreover, the error estimation and the geological analysis are carried out, and we investigate the possible correspondence between the lithospheric field and the surface heat flow. The results show that the 3DSS model can better describe the detailed distribution of the lithospheric field after comparing it with other models. Some new features are reflected, particularly in the areas of Southern Xinjiang and Tibet, such as a positive anomaly stripe in the southwest, its neighboring Tashkurgan–Hotan–Cele–Minfeng–Qiemo–Ruoqiang belt, and the middle edge of the Kunlun Mountains. The stripe, in terms of rock composition, has a shallow magnetic field source and is related to magnetic intrusions; the lithospheric field in Tibet is weak. Additionally, when the heat flow distribution is compared to our results, there is a good consistency between a positive stripe of heat flow and a positive stripe of the lithospheric field in southern Tibet. The large heat flow values may be related to the shallow Curie surface, which shows that demagnetization is happening close to the surface. However, more of a ferromagnetic mineral, Titanium magnetite, is found there.

Funder

National Natural Science Foundation of China

Macau Foundation and the pre-research project of Civil Aerospace Technologies

Specialized Research Fund for State Key Laboratories

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference42 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3