Analysis of Spatial–Temporal Variability of PM2.5 Concentrations Using Optical Satellite Images and Geographic Information System

Author:

Heriza Dewinta1ORCID,Wu Chih-Da1ORCID,Syariz Muhammad Aldila2ORCID,Lin Chao-Hung1ORCID

Affiliation:

1. Department of Geomatics, National Cheng Kung University, Tainan City 70101, Taiwan

2. Department of Geomatics Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

Abstract

Particulate matter less than 2.5 microns in diameter (PM2.5) is an air pollutant that has become a major environmental concern for governments around the world. Management and control require air quality monitoring and prediction. However, previous studies did not fully utilize the spectral information in multispectral satellite images and land use data in geographic datasets. To alleviate these problems, this study proposes the extraction of land use information not only from geographic inventory but also from satellite images with a machine learning-based classification. In this manner, near up-to-date land use data and spectral information from satellite images can be utilized, and the integration of geographic and remote sensing datasets boosts the accuracy of PM2.5 concentration modeling. In the experiments, Landsat-8 imagery with a 30-m spatial resolution was used, and cloud-free image generation was performed prior to the land cover classification. The proposed method, which uses predictors from geographic and multispectral satellite datasets in modeling, was compared with an approach which utilizes geographic and remote sensing datasets, respectively. Quantitative assessments showed that the proposed method and the developed model, with a performance of RMSE = 3.06 µg/m3 and R2 = 0.85 comparatively outperform the models with a performance of RMSE = 3.14 µg/m3 and R2 = 0.68 for remote sensing datasets and a performance of RMSE = 3.47 µg/m3 and R2 = 0.79 for geographic datasets.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3