Unveiling Temperature Patterns in Tree Canopies across Diverse Heights and Types

Author:

Shaik Riyaaz Uddien1ORCID,Jallu Sriram Babu2,Doctor Katarina3ORCID

Affiliation:

1. School of Aerospace Engineering, Sapienza University of Rome, 00138 Rome, Italy

2. Wageningen University & Research, 6700 HB Wageningen, The Netherlands

3. Naval Research Laboratory, Navy Center for Applied Research in Artificial Intelligence, Washington, DC 20375, USA

Abstract

Forests are some of the major ecosystems that help in mitigating the effects of climate change. Understanding the relation between the surface temperatures of different vegetation and trees and their heights is very crucial in understanding events such as wildfires. In this work, relationships between tree canopy temperature and canopy height with respect to vegetation types were extracted. The southern part of Sardinia Island, which has dense forests and is often affected by wildfires, was selected as the region of interest. PRISMA hyperspectral imagery has been used to map all the available vegetation types in the region of interest using the support vector machine classifier with an accuracy of >80% for all classes. The Global Ecosystem Dynamics Investigation’s (GEDI) L2A Raster Canopy Top Height product provides canopy height measurements in spatially discrete footprints, and to overcome this issue of discontinuous sampling, Random Forest Regression was used on Sentinel-1 SAR data, Sentinel-2 multispectral data, and the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) to estimate the canopy heights of various vegetation classes, with a root mean squared error (RMSE) value of 2.9176 m and a coefficient of determination (R2) value of 0.791. Finally, the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) and emissivity product provides ground surface temperature regardless of land use and land cover (LULC) types. LST measurements over tree canopies are considered as the tree canopy temperature. We estimated the relationship between the canopy temperature of five vegetation types (evergreen oak, olive, juniper, silicicole, riparian trees) and the corresponding canopy heights and vegetation types. The resulting scatter plots showed that lower tree canopy temperatures correspond with higher tree canopies with a correlation coefficient in the range of −0.4 to −0.5 for distinct types of vegetation.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference61 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Remote Sensing of Climate-Vegetation Dynamics and Their Effects on Ecosystems;Remote Sensing;2023-10-25

2. Exploring Canopy Temperature and Height Dynamics in Forest Ecosystems;2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE);2023-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3