Frequency Extraction of Global Constant Frequency Electromagnetic Disturbances from Electric Field VLF Data on CSES

Author:

Han Ying1,Wang Qiao2ORCID,Huang Jianping2,Yuan Jing1,Li Zhong1ORCID,Wang Yali1,Liu Haijun1,Shen Xuhui3

Affiliation:

1. Institute of Disaster Prevention, Sanhe 065421, China

2. National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China

3. National Space Science Center, Chinese Academy of Sciences, Beijing 100085, China

Abstract

The electromagnetic data observed with the CSES (China Seismo-Electromagnetic Satellite, also known as Zhangheng-1 satellite) contain numerous spatial disturbances. These disturbances exhibit various shapes on the spectrogram, and constant frequency electromagnetic disturbances (CFEDs), such as artificially transmitted very-low-frequency (VLF) radio waves, power line harmonics, and interference from the satellite platform itself, appear as horizontal lines. To exploit this feature, we proposed an algorithm based on computer vision technology that automatically recognizes these lines on the spectrogram and extracts the frequencies from the CFEDs. First, the VLF waveform data collected with the CSES electric field detector (EFD) are converted into a time–frequency spectrogram using short-time Fourier Transform (STFT). Next, the CFED automatic recognition algorithm is used to identify horizontal lines on the spectrogram. The third step is to determine the line frequency range based on the proportional relationship between the frequency domain of the satellite’s VLF and the height of the time–frequency spectrogram. Finally, we used the CSES power spectrogram to confirm the presence of CFEDs in the line frequency range and extract their true frequencies. We statistically analyzed 1034 orbit time–frequency spectrograms and power spectrograms from 8 periods (5 days per period) and identified approximately 200 CFEDs. Among them, two CFEDs with strong signals persisted throughout an entire orbit. This study establishes a foundation for detecting anomalies due to artificial sources, particularly in the study of short-term strong earthquake prediction. Additionally, it contributes to research on other aspects of spatial electromagnetic interference and the suppression and cleaning of electromagnetic waves.

Funder

NSFC project

China Earthquake Administration Teacher Research Fund Project

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3