Potential of Optical Spaceborne Sensors for the Differentiation of Plastics in the Environment

Author:

Schmidt Toni123ORCID,Kuester Theres3ORCID,Smith Taylor4ORCID,Bochow Mathias3ORCID

Affiliation:

1. Department Remote Sensing, Helmholtz-Centre for Environmental Research—UFZ, 04318 Leipzig, Germany

2. Remote Sensing Centre for Earth System Research—RSC4Earth, Leipzig University, 04103 Leipzig, Germany

3. Remote Sensing and Geoinformatics Section, Helmholtz Centre Potsdam—GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany

4. Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany

Abstract

Plastics are part of our everyday life, as they are versatile materials and can be produced inexpensively. Approximately 10 Gt of plastics have been produced to date, of which the majority have been accumulated in landfills or have been spread into the terrestrial and aquatic environment in an uncontrolled way. Once in the environment, plastic litter—in its large form or degraded into microplastics—causes several harms to a variety of species. Thus, the detection of plastic waste is a pressing research question in remote sensing. The majority of studies have used Sentinel-2 or WorldView-3 data and empirically explore the usefulness of the given spectral channels for the detection of plastic litter in the environment. On the other hand, laboratory infrared spectroscopy is an established technique for the differentiation of plastic types based on their type-specific absorption bands; the potential of hyperspectral remote sensing for mapping plastics in the environment has not yet been fully explored. In this study, reflectance spectra of the five most commonly used plastic types were used for spectral sensor simulations of ten selected multispectral and hyperspectral sensors. Their signals were classified in order to differentiate between the plastic types as would be measured in nature and to investigate sensor-specific spectral configurations neglecting spatial resolution limitations. Here, we show that most multispectral sensors are not able to differentiate between plastic types, while hyperspectral sensors are. To resolve absorption bands of plastics with multispectral sensors, the number, position, and width of the SWIR channels are decisive for a good classification of plastics. As ASTER and WorldView-3 had/have narrow SWIR channels that match with diagnostic absorption bands of plastics, they yielded outstanding results. Central wavelengths at 1141, 1217, 1697, and 1716 nm, in combination with narrow bandwidths of 10–20 nm, have the highest capability for plastic differentiation.

Funder

German Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference66 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3