Energy-Based Unmixing Method for Low Background Concentration Oil Spills at Sea

Author:

Lu Huimin12ORCID,Li Ying1,Liu Bingxin1ORCID

Affiliation:

1. Navigation College, Dalian Maritime University, Dalian 116026, China

2. Department of Basic Science, Dalian Naval Academy, Dalian 116029, China

Abstract

Marine oil spills have caused severe environmental pollution with long-term toxic effects on marine ecosystems and coastal habitants. Hyperspectral remote sensing is currently used in efforts to respond to oil spills. Spectral unmixing plays a key role in hyperspectral imaging because of its ability to extract accurate fractional abundances of constituent materials from spectrums collected by sensors. However, multiple oil-propagating processes provide different mixing states of oil and water, thereby involving complicated, nonlinear mixing effects between in-depth elements in water, especially those with a low concentration. Therefore, an accurate inversion of material abundance remains a challenging yet fundamental task. This study proposes an unmixing method with normalizers in a combined polynomial and sine model to resolve overfitting problems. An energy information-based wavelet package scheme effectively highlights the latent information of the concerned material. Experimental analyses of synthetic and real data indicate that the proposed method shows superior unmixing performance, especially in delivering more accurate abundance estimations of different background oil concentration levels as low as a fractional abundance of 10−5, and can be used for long-term monitoring of oil propagation.

Funder

China National Key R&D Program

Liao Ning Revitalization Talents Program

Dalian Naval Academy Teaching and Research Capability Support Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3