Affiliation:
1. Department of Geography, The Ohio State University, Columbus, OH 43210, USA
2. Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
Abstract
ArcticDEM provides the public with an unprecedented opportunity to access very high-spatial resolution digital elevation models (DEMs) covering the pan-Arctic surfaces. As it is generated from stereo-pairs of optical satellite imagery, ArcticDEM represents a mixture of a digital surface model (DSM) over a non-ground areas and digital terrain model (DTM) at bare grounds. Reconstructing DTM from ArcticDEM is thus needed in studies requiring bare ground elevation, such as modeling hydrological processes, tracking surface change dynamics, and estimating vegetation canopy height and associated forest attributes. Here we proposed an automated approach for estimating DTM from ArcticDEM in two steps: (1) identifying ground pixels from WorldView-2 imagery using a Gaussian mixture model (GMM) with local refinement by morphological operation, and (2) generating a continuous DTM surface using ArcticDEMs at ground locations and spatial interpolation methods (ordinary kriging (OK) and natural neighbor (NN)). We evaluated our method at three forested study sites characterized by different canopy cover and topographic conditions in Livengood, Alaska, where airborne lidar data is available for validation. Our results demonstrate that (1) the proposed ground identification method can effectively identify ground pixels with much lower root mean square errors (RMSEs) (<0.35 m) to the reference data than the comparative state-of-the-art approaches; (2) NN performs more robustly in DTM interpolation than OK; (3) the DTMs generated from NN interpolation with GMM-based ground masks decrease the RMSEs of ArcticDEM to 0.648 m, 1.677 m, and 0.521 m for Site-1, Site-2, and Site-3, respectively. This study provides a viable means of deriving high-resolution DTM from ArcticDEM that will be of great value to studies focusing on the Arctic ecosystems, forest change dynamics, and earth surface processes.
Funder
National Science Foundation
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献