Evaluation and Analysis of the Accuracy of Open-Source Software and Online Services for PPP Processing in Static Mode

Author:

Vázquez-Ontiveros Jesus René1ORCID,Padilla-Velazco Jorge1,Gaxiola-Camacho J. Ramon2ORCID,Vázquez-Becerra Guadalupe Esteban1ORCID

Affiliation:

1. Department of Earth and Space Sciences, Autonomous University of Sinaloa, Culiacan 80040, Mexico

2. Department of Civil Engineering, Autonomous University of Sinaloa, Culiacan 80040, Mexico

Abstract

It has been proven that precise point positioning (PPP) is a well-established technique to obtain high-precision positioning in the order between centimeters and millimeters. In this context, different studies have been carried out to evaluate the performance of PPP in static mode as a possible alternative to the relative method. However, only a few studies have evaluated the performance of a large number of different open-source software programs and have focused extensively on online free PPP services. Therefore, in this paper, a comprehensive comparison of processing in static mode between different open-source software and the online free PPP services is developed. For the evaluation, different GNSS observation files collected at 45 International GNSS Service (IGS) stations distributed worldwide were processed in static PPP mode. Within this frame of reference, ten open-source PPP software and five online free PPP services were studied. The results from the processing strategy demonstrate that it is possible to obtain precision in the order of millimeters with both open-source software and online PPP services. In addition, online PPP services experienced better performance than some other specialized PPP software. In summary, the results show that the daily solutions for the E (East), N (North), and U (Up) components estimated by the ten open-source software and by the five online free PPP services can reach millimeter precision for some stations. Among the open-source software, the PRIDE-PPPAR presented the best performance with a Root Mean Square Error (RMSE) of 5.52, 5.40, and 6.79 mm in the E, N, and U components, respectively. Alternatively, in the case of the online free PPP services, the APPS and CSRS-PPP produced the most accurate results, with RMSE values less than 12 mm for the three components. Finally, the open-source software and online free PPP services experienced similar positioning performance in the horizontal and vertical components, demonstrating that both can be implemented in static mode without compromising the accuracy of the measurement.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3