Optimization for Software Implementation of Fractional Calculus Numerical Methods in an Embedded System

Author:

Matusiak MariuszORCID

Abstract

In this article, some practical software optimization methods for implementations of fractional order backward difference, sum, and differintegral operator based on Grünwald–Letnikov definition are presented. These numerical algorithms are of great interest in the context of the evaluation of fractional-order differential equations in embedded systems, due to their more convenient form compared to Caputo and Riemann–Liouville definitions or Laplace transforms, based on the discrete convolution operation. A well-known difficulty relates to the non-locality of the operator, implying continually increasing numbers of processed samples, which may reach the limits of available memory or lead to exceeding the desired computation time. In the study presented here, several promising software optimization techniques were analyzed and tested in the evaluation of the variable fractional-order backward difference and derivative on two different Arm® Cortex®-M architectures. Reductions in computation times of up to 75% and 87% were achieved compared to the initial implementation, depending on the type of Arm® core.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3