Author:
Okosun Tyamo,Nielson Samuel,D’Alessio John,Ray Shamik,Street Stuart,Zhou Chenn
Abstract
During recent years, there has been great interest in exploring the potential for high-rate natural gas (NG) injection in North American blast furnaces (BFs) due to the fuel’s relatively low cost, operational advantages, and reduced carbon footprint. However, it is well documented that increasing NG injection rates results in declining raceway flame temperatures (a quenching effect on the furnace, so to speak), with the end result of a functional limit on the maximum injection rate that can be used while maintaining stable operation. Computational fluid dynamics (CFD) models of the BF raceway and shaft regions developed by Purdue University Northwest’s (PNW) Center for Innovation through Visualization and Simulation (CIVS) have been applied to simulate multi-phase reacting flow in industry blast furnaces with the aim of exploring the use of pre-heated NG as a method of widening the BF operating window. Simulations predicted that pre-heated NG injection could increase the flow of sensible heat into the BF and promote complete gas combustion through increased injection velocity and improved turbulent mixing. Modeling also indicated that the quenching effects of a 15% increase in NG injection rate could be countered by a 300K NG pre-heat. This scenario maintained furnace raceway flame temperatures and top gas temperatures at levels similar to those observed in baseline (stable) operation, while reducing coke rate by 6.3%.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Reference34 articles.
1. Natural Gas Utilization in Blast Furnace Ironmaking: Tuyère Injection, Shaft Injection and Prereduction;Pistorius,2017
2. The Iron Blast Furnace: Theory and Practice;Peacey,1979
3. Modern Blast Furnace Ironmaking: An Introduction;Geerdes,2015
4. Making blast-furnace smelting more efficient through the injection of heated natural gas
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献