The Dead Time Characterization Method of Quartz Flexure Accelerometers Using Monotonicity Number

Author:

Wu BinORCID,Ye Lingyun,Huang TiantianORCID,Yang Zhaowei,Song Kaichen

Abstract

Dead time estimation is important in the design process of quartz flexure accelerometers. However, to the authors’ knowledge, the dead time existing in quartz flexure accelerometers is not well investigated in conventional identification studies. In this paper, the dead time, together with the open-loop transfer function of quartz flexure accelerometers, is identified from step excitation experiments using two steps. Firstly, a monotonicity number was proposed to estimate the dead time. Analysis showed that the monotonicity number was robust enough to measurement noise and sensitive to step excitation. Secondly, parameters of the open-loop transfer function were identified using the least mean squares algorithm. A simulation example was applied to demonstrate the validity of the proposed method. The verified method was used to test a quartz flexure accelerometer. The experimental result shows that the dead time was 500 μs.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3