Author:
Huang Yu,Li Shuqin,Ding Peng,Zhang Yan,Yang Kai,Zhang Weiting
Abstract
An MECS (multiple energy carrier system) could meet diverse energy needs owing to the integration of different energy carriers, while the distinction of quality of different energy resources should be taken into account during the operation stage, in addition the economic principle. Hence, in this paper, the concept of exergy is adopted to evaluate each energy carrier, and an economic–exergetic optimal scheduling model is formulated into a mixed integer linear programming (MILP) problem with the implementation of a real-time pricing (RTP)-based demand response (DR) program. Moreover, a multi-objective (MO) operation strategy is applied to this scheduling model, which is divided into two parts. First, the ε-constraint method is employed to cope with the MILP problem to obtain the Pareto front by using the state-of-the-art CPLEX solver under the General Algebraic Modeling System (GAMS) environment. Then, a preferred solution selection strategy is introduced to make a trade-off between the economic and exergetic objectives. A test system is investigated on a typical summer day, and the optimal dispatch results are compared to validate the effectiveness of the proposed model and MO operation strategy with and without DR. It is concluded that the MECS operator could more rationally allocate different energy carriers and decrease energy cost and exergy input simultaneously with the consideration of the DR scheme.
Funder
Fundamental Research Funds for the Central Universities
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献