Abstract
The effect of nitrogen doped bamboo-like carbon nanotubes (N–CNTs) on the properties of supported platinum (0.2 and 1 wt %) catalysts in formic acid decomposition for hydrogen production was studied. It was shown that both impregnation and homogeneous precipitation routes led to the formation of electron-deficient platinum stabilized by pyridinic nitrogen sites of the N–CNTs. The electron-deficient platinum species strongly enhanced the activity and selectivity of the Pt/N–CNTs catalysts when compared to the catalysts containing mainly metallic platinum nanoparticles. A comparison of bamboo-like N–CNTs and herring-bone nitrogen doped carbon nanofibers (N–CNFs) as the catalyst support allowed us to conclude that the catalytic properties of supported platinum are determined by its locally one-type interaction with pyridinic nitrogen sites of the N–CNTs or N–CNFs irrespective of substantial structural differences between nanotubes and nanofibers.
Funder
Russian Science Foundation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献