Abstract
In this work, the ion flow field of a monopolar transmission line inside the corona cage of a square cross-section is iteratively calculated concerning the effects of wind. The electric field distribution is solved analytically using the charge simulation method (CSM). Meanwhile, the upwind finite volume method (UFVM) with 2nd order accuracy is presented for the distribution of space charge density. Additionally, a dual mesh grid is established in the calculation domain, the interlaced geometric construction of the mesh assures a quick and effective convergence rate. In the final part, a reduced-scaled experiment is designed to examine the feasibility and accuracy of this approach, electric field and ion current density on the bottom side are measured by field mills and Wilson plates. The data numerically computed fits well with that acquired by measurement.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献