Author:
Jiang Shaokang,Jiang Haobin,Ma Shidian,Jiang Zhongxu
Abstract
Obtaining information on parking slots is a prerequisite for the development of automatic parking systems, which is an essential part of the automatic driving processes. In this paper, we proposed a parking-slot-marking detection approach based on deep learning. The detection process involves the generation of mask of the marking-points by using the Mask R-CNN algorithm, extracting parking guidelines and parallel lines on the mask using the line segment detection (LSD) to determine the candidate parking slots. The experimental results show that the proposed method works well under the condition of complex illumination and around-view images from different sources, with a precision of 94.5% and a recall of 92.7%. The results also indicate that it can be applied to diverse slot types, including vertical, parallel and slanted slots, which is superior to previous methods.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献