Person Independent Recognition of Head Gestures from Parametrised and Raw Signals Recorded from Inertial Measurement Unit

Author:

Borowska-Terka AnnaORCID,Strumillo PawelORCID

Abstract

Numerous applications of human–machine interfaces, e.g., dedicated to persons with disabilities, require contactless handling of devices or systems. The purpose of this research is to develop a hands-free head-gesture-controlled interface that can support persons with disabilities to communicate with other people and devices, e.g., the paralyzed to signal messages or the visually impaired to handle travel aids. The hardware of the interface consists of a small stereovision rig with a built-in inertial measurement unit (IMU). The device is to be positioned on a user’s forehead. Two approaches to recognize head movements were considered. In the first approach, for various time window sizes of the signals recorded from a three-axis accelerometer and a three-axis gyroscope, statistical parameters were calculated such as: average, minimum and maximum amplitude, standard deviation, kurtosis, correlation coefficient, and signal energy. For the second approach, the focus was put onto direct analysis of signal samples recorded from the IMU. In both approaches, the accuracies of 16 different data classifiers for distinguishing the head movements: pitch, roll, yaw, and immobility were evaluated. The recordings of head gestures were collected from 65 individuals. The best results for the testing data were obtained for the non-parametric approach, i.e., direct classification of unprocessed samples of IMU signals for Support Vector Machine (SVM) classifier (95% correct recognitions). Slightly worse results, in this approach, were obtained for the random forests classifier (93%). The achieved high recognition rates of the head gestures suggest that a person with physical or sensory disability can efficiently communicate with other people or manage applications using simple head gesture sequences.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. International Conferences on Human System Interactions, HIShttps://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1002118

2. Usability Engineering;Nielsen,1993

3. The Engineering Handbook of Smart Technology for Aging, Disability, and Independence,2008

4. Multimodal Interfaces: A Survey of Principles, Models and Frameworks;Dumas,2009

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3