Development of a Simulation Model for HMT of a 50 kW Class Agricultural Tractor

Author:

Baek Seung-Min,Kim Wan-SooORCID,Kim Yeon-SooORCID,Baek Seung-Yun,Kim Yong-JooORCID

Abstract

This study was conducted to develop a simulation model of a 50 kW class hydro mechanical transmission (HMT) tractor and to verify the model by comparing the measured and simulated data, including the axle torque, rotational speed, and power transmission efficiency. The platform of the HMT was composed of the engine, hydrostatic unit (HSU), compound planetary gear, range shift, spiral bevel gear, and final reduction gear. The HMT had three gear stages and a maximum forward speed of 40 km/h. To evaluate the performance of the HTM, a test bench was installed based on the engine of the HMT platform, and a simulation model was developed using 3D simulation software. To compare the results of the simulation, a bench test using the platform was performed according to the gear stages. The similarities between the measured and simulated data were analyzed using the t-test. As a result, there were no significant differences for the axle torque, rotational speed, and power transmission efficiency. Finally, the power transmission efficiency between the measured and simulated results was compared and analyzed using linear regression analysis to validate the accuracy of the simulation model. The trend of the power transmission efficiency between the measured and simulated results appeared to be similar in all sections, and we obtained a simulation model with the accuracy of an R-squared value of more than 0.97. In conclusion, the measured and simulated results were similar to each other. Considering the results of this study, it will be useful to develop the HMT tractor and to improve the power transmission efficiency for the optimal design.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3