Development of a Deep Learning-Based Algorithm to Detect the Distal End of a Surgical Instrument

Author:

Sugimori HiroyukiORCID,Sugiyama TakuORCID,Nakayama NaokiORCID,Yamashita Akemi,Ogasawara KatsuhikoORCID

Abstract

This work aims to develop an algorithm to detect the distal end of a surgical instrument using object detection with deep learning. We employed nine video recordings of carotid endarterectomies for training and testing. We obtained regions of interest (ROI; 32 × 32 pixels), at the end of the surgical instrument on the video images, as supervised data. We applied data augmentation to these ROIs. We employed a You Only Look Once Version 2 (YOLOv2) -based convolutional neural network as the network model for training. The detectors were validated to evaluate average detection precision. The proposed algorithm used the central coordinates of the bounding boxes predicted by YOLOv2. Using the test data, we calculated the detection rate. The average precision (AP) for the ROIs, without data augmentation, was 0.4272 ± 0.108. The AP with data augmentation, of 0.7718 ± 0.0824, was significantly higher than that without data augmentation. The detection rates, including the calculated coordinates of the center points in the centers of 8 × 8 pixels and 16 × 16 pixels, were 0.6100 ± 0.1014 and 0.9653 ± 0.0177, respectively. We expect that the proposed algorithm will be efficient for the analysis of surgical records.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3