Modulation Bandwidth Enhancement of Monolithically Integrated Mutually Coupled Distributed Feedback Laser

Author:

Zhao WuORCID,Mao Yuanfeng,Lu DanORCID,Huang Yongguang,Zhao Lingjuan,Kan Qiang,Wang Wei

Abstract

Modulation bandwidth enhancement of directly modulated semiconductor lasers (DMLs) has attracted broad interest to accommodate the tremendously growing demand for network traffic. In this paper, a monolithically integrated mutually coupled (IMC) laser for the O-band is demonstrated both numerically and experimentally. The direct modulation bandwidth was enhanced utilizing a photon–photon resonance (PPR) effect based on the mutual injection-locking technique. The IMC laser consisted of two distributed feedback (DFB) laser sections with a semiconductor optical amplifier (SOA) section in between. The relationship between the PPR frequency and SOA length was analyzed numerically to achieve a flat modulation response by optimizing the SOA length. Then, an enhanced 3-dB bandwidth of 38.7 GHz was realized experimentally, a nearly threefold enhancement over the modulation bandwidth of a solitary DFB laser at the same bias. Moreover, clear open eyes up to 40 Gb/s transmission over a 25-km single-mode fiber were achieved. Although the dynamic extinction ratio of the eye diagram was 1.1 dB, it can be further improved by increasing the mutual injection locking range of the IMC laser.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3