NTARC: A Data Model for the Systematic Review of Network Traffic Analysis Research

Author:

Iglesias FélixORCID,Ferreira Daniel C.ORCID,Vormayr GernotORCID,Bachl MaximilianORCID,Zseby TanjaORCID

Abstract

The increased interest in secure and reliable communications has turned the analysis of network traffic data into a predominant topic. A high number of research papers propose methods to classify traffic, detect anomalies, or identify attacks. Although the goals and methodologies are commonly similar, we lack initiatives to categorize the data, methods, and findings systematically. In this paper, we present Network Traffic Analysis Research Curation (NTARC), a data model to store key information about network traffic analysis research. We additionally use NTARC to perform a critical review of the field of research conducted in the last two decades. The collection of descriptive research summaries enables the easy retrieval of relevant information and a better reuse of past studies by the application of quantitative analysis. Among others benefits, it enables the critical review of methodologies, the detection of common flaws, the obtaining of baselines, and the consolidation of best practices. Furthermore, it provides a basis to achieve reproducibility, a key requirement that has long been undervalued in the area of traffic analysis. Thus, besides reading hard copies of papers, with NTARC, researchers can make use of a digital environment that facilitates queries and reviews over a comprehensive field corpus.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference131 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evading Botnet Detection;Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing;2024-04-08

2. A Study on Network Intrusion Detection Systems by Employing Memory-Based Learning Techniques;2024 3rd International Conference on Sentiment Analysis and Deep Learning (ICSADL);2024-03-13

3. Developing a Traffic Analysis Suite for Modified Packet Capture File;Lecture Notes in Computer Science;2024

4. Comparison of Hash Functions for Network Traffic Acquisition Using a Hardware-Accelerated Probe;Electronics;2022-05-25

5. Evaluating the Functioning Quality of Data Transmission Networks in the Context of Cyberattacks;Energies;2021-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3