Field Tests on Eco-Friendly Railway Precast Concrete Slab

Author:

Koh Taehoon,Shin MoochulORCID

Abstract

This study focuses on evaluating the field performance of a newly developed eco-friendly precast concrete slab track structure for railway/subway systems in Seoul, South Korea. Although Ballasted railway track structures are one of the most common track structures in the railway industry, they have some drawbacks including higher maintenance cost, un-uniform supports, and a high level of noise and vibration. However, a ballastless (slab-based) track structure system requires less maintenance and uniform support conditions, as well as several ballastless structure systems developed for high-speed trains. The Seoul Metro subway in South Korea has developed a ballastless reinforced concrete (RC) slab railway system using a type of conventional concrete. This study presents a ballastless precast concrete slab using a newly developed eco-friendly concrete, which can significantly improve structural performances and the manufacturability of a railway track structure system. This study evaluates the field performance of the eco-friendly concrete slab system deployed in one of the existing tunnel sections of the Seoul Metro subway system. A total of 10 m long slab sections including a 5 m long eco-friendly “ballasted track to slab track (B2S)” panels section and a 5 m long conventional B2S panels section are installed and monitored side by side. Field tests are performed to measure the level of noise, vibration, dynamic wheel load, rail displacement, and rail stress. The field measurements from the eco-friendly B2S section are compared to those of the conventional reinforced concrete slab track systems. The results show that the performance of the new B2S system using the eco-friendly concrete is comparable and/or superior to the conventional system.

Funder

Korea Railroad Research Institute

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference21 articles.

1. Ballast Fouling Measurement Tool: Phase 1;Oden,2018

2. Ground Penetrating Radar Technology Evaluation and Implementation: Phase 2;Brown,2018

3. The Role of Ballast-Fouling Characteristics on the Drainage Capacity of Rail Substructure

4. National Transportation Safety Board Railroad Accident Brief: Metro-North Railroad Derailment,2014

5. A Study of Environmental and Track Factors That Contribute to Abrasion Damage of Concrete Ties;Riding,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3