Fatigue Crack Growth from Notches: A Numerical Analysis

Author:

Borges MicaelORCID,Caldas Manuel,Antunes Fernando,Branco Ricardo,Prates PedroORCID

Abstract

A numerical approach based on plastic crack tip opening displacement (CTOD) was followed to study fatigue crack growth (FCG) from notches. The identification of fundamental mechanisms was made considering notched and unnotched models, with and without contact of crack flanks. Different parameters were studied, namely, notch radius, crack length, stress state, and material. The notch increases the plastic CTOD, and therefore fatigue crack growth rate, da/dN, as expected. The reduction of notch radius increases da/dN but reduces the notch affected zone. Ahead of the notch affected zone, da/dN increases linearly with crack growth, with a rate that increases linearly with the plastic CTOD. The crack closure phenomenon has a dramatic effect under plane stress conditions but a limited effect on plane strain conditions. In the former case, the contact of crack flanks reduces substantially the effect of notch radius and the size of the notch affected zone. These trends are associated with the increase of crack closure level with notch radius. The material does not affect the global trends, but the reduction of yield stress increases the level of plastic deformation and therefore da/dN. The effect of material, and also of stress state, is mainly associated with crack closure.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3