Author:
Lu Xiaoyun,Wang Hu,Tang Shuming,Huang Huimin,Li Chuang
Abstract
Many classic visual monocular SLAM (simultaneous localization and mapping) systems have been developed over the past decades, yet most of them fail when dynamic scenarios dominate. DM-SLAM is proposed for handling dynamic objects in environments based on ORB-SLAM2. This article mainly concentrates on two aspects. Firstly, we proposed a distribution and local-based RANSAC (Random Sample Consensus) algorithm (DLRSAC) to extract static features from the dynamic scene based on awareness of the nature difference between motion and static, which is integrated into initialization of DM-SLAM. Secondly, we designed a candidate map points selection mechanism based on neighborhood mutual exclusion to balance the accuracy of tracking camera pose and system robustness in motion scenes. Finally, we conducted experiments in the public dataset and compared DM-SLAM with ORB-SLAM2. The experiments corroborated the superiority of the DM-SLAM.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献