Effect of Co-Ingestion of Collagen Peptides with Yogurt on Blood Absorption of Short Chain Hydroxyproline Peptides

Author:

Iwasaki Yu,Taga Yuki,Suzuki Asahi,Kurokawa Mihoko,Sato Yoshio,Shigemura YasutakaORCID

Abstract

Collagen peptides (CP) have been used as functional foods for enhancing skin and joint health. Further degradation of CP results in peptide sizes small enough to enter the bloodstream following absorption in the small intestine. We examined the effects of food matrices on CP degradation into short chain peptides and absorption efficiency after ingestion. Changes to hydroxyproline (Hyp)-containing peptide levels in CP after yogurt fermentation and in human plasma by co-ingestion of CP and yogurt, with or without fermentation, were evaluated by liquid chromatography-mass spectrometry (LC-MS). The fermentation of CP with yogurt resulted in the significant degradation of CP into several Hyp-containing peptides such as Ala-Hyp, Leu-Hyp, Phe-Hyp, Ala-Hyp-Gly, and Leu-Hyp-Gly. CP ingestion after yogurt fermentation significantly increased the plasma concentrations of Phe-Hyp, cyclo(Ala-Hyp), and cyclo(Pro-Hyp) compared to water-based CP ingestion. The co-ingestion of CP and yogurt without fermentation significantly increased the plasma levels of Ala-Hyp, Phe-Hyp, Ala-Hyp-Gly, Leu-Hyp-Gly, Pro-Hyp-Gly, cyclo(Ala-Hyp), cyclo(Glu-Hyp), and cyclo(Pro-Hyp). Overall, the co-ingestion of CP and yogurt with or without fermentation significantly enhanced the absorption of CP-derived peptides, represented by the high Cmax and area under the curve per 1 h (AUC, nmol/h·mL) of Hyp-containing peptides. These results suggest that, in addition to increasing short chain Hyp-containing peptide levels via fermentation, yogurt matrices containing milk-derived peptides and/or lactic acid bacteria-derived peptidases may influence the efficient absorption of CP-derived peptides into human blood.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3