Abstract
The wind turbine’s operation is affected by the wind speed variations, which cannot be followed by the wind turbine due to the large moment of the power plant’s inertia. The method proposed in this paper belongs to the wind turbine power curves (WTPC) approach, which expresses the power curve of the permanent magnet synchronous generator (PMSG) by a set of mathematical equations. The WTPC research papers published before now have not taken into consideration the total power plant inertia at time-variable wind speeds, when the wind turbine’s optimal operation is very difficult to be reached, and its efficiency is thus threatened. The study is based on a wind turbine having a large moment of total inertia, and demonstrates, through extensive simulation results, that the optimal values of the PMSG’s power can be determined based on the kinetic motion equation. This PMSG’s optimal power represents an ideal time-varying curve, and the wind turbine should be controlled so as to closely follow it. For this purpose, proportional integral (PI) and proportional integral derivative (PID) type-based control methods were implemented and analyzed, so that the PMSG’s power oscillations could be reduced, and the PMSG’s angular speed value made comparable to the optimal one, meaning that the wind turbine operates within the optimal operation area, and is efficient. The simulations are actually the numerical solutions obtained by using the Scientific Workplace simulation environment, and they are based on the wind speed measurements collected from a wind farm located in Dobrogea, Romania.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献