Abstract
The study examined the effect of noninvasive crown retrieval/reuse process using an erbium-doped yttrium aluminum garnet laser (Er:YAG). Twenty-six extracted human teeth were prepared for a crown. The crown was milled using lithium disilicate (LD) and zirconia (Z) materials, n = 13 per group, with three for scanning electron microscopy (SEM). The crown was luted using composite resin cement and subjected to a laser retrieval process. After the retrieval process, the crown was cleaned, re-cemented and laser-retrieved two more times, without and with additional tooth reduction mimicking clinical refreshment of dentin. Retrieval time and temperature were analyzed using analysis of variance (ANOVA). Surface changes were observed through SEM. The retrieval times were 267.1 ± 130.43, 220 ± 79.09, 277.1 ± 126.44, 368.4 ± 136.14, 355 ± 159.39, and 419.2 ± 121.36 s for first, second, third LD and Z groups, respectively (p = 0.009). The maximal temperatures were 23.95.1 ± 1.89 °C, 24.86 ± 2.01 °C, 24.17 ± 1.53 °C, 22.88 ± 1.51 °C, 24.03 ± 1.74 °C, and 21.99 ± 1.32 °C for first, second, third LD and Z groups, respectively (p = 0.006). Er:YAG laser crown removal is an effective retrieval tool for all-ceramic crowns. Minimal changes to teeth and crowns were observed following laser irradiation.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献