Sustainable Energy Systems: Optimization and Efficiency

Author:

Carlos de Oliveira Matias JoãoORCID,Godina RaduORCID,Pouresmaeil EdrisORCID

Abstract

The world population is growing at a very high rate, which also entails a massive increase in energy consumption, and also, therefore, in its production, which is gradually and steadily increasing. Energy and the environment are essential to achieving sustainable development, and constitute a fundamental part of human activity. If we consider energy efficiency as the use of an appliance, process or installation for which we try to produce more energy, but with less energy consumption than the average for these appliances, processes or installations, then achieving a higher energy efficiency is imperative. Energy efficiency is a cornerstone policy on the road to stopping climate change and to achieving sustainable societies, along with the development of renewable energy and an environmentally friendly transport policy. In this Special Issue, 11 selected and peer-reviewed articles have been contributed, on a wide range of topics under the umbrella of sustainable energy systems. The published articles encompass distinct areas of interest. One area addresses distributed generation, which addresses such topics as the optimal planning of distributed generation, protection of blind areas in distribution networks, multi-objective optimization in distributed generation, energy management of virtual power plants in distributed generation, and the impact of demand-response programs on a home microgrid, as well as concentrating solar power into a highly renewable, penetrated power system. The second section of the Special Issue addresses a wide range of topics, from parametric studies of 2 MW gas engines or data centers, to combustion characteristics of a non-premixed oxy-flame, to new techniques of PV Tracking, to applications of nanofluids in the thermal performance enhancement of parabolic trough solar collectors.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3