Integrating In-Situ Data and RS-GIS Techniques to Identify Groundwater Potential Sites in Mountainous Regions of Taiwan

Author:

Lin Jung-JunORCID,Liou Yuei-AnORCID

Abstract

Due to rapid urbanization, the development of megacities and metropolises worldwide is creating water scarcity, social-environmental risk, and challenges to the regions where water supply from rivers and alluvial aquifers is insufficient and unstable. Groundwater exploration in fractured bedrock of mountainous regions is thus a crucial issue in the search for substitute water resources. To achieve cost effectiveness on groundwater exploration, the use of comprehensive remote sensing (RS)- and geographic information system (GIS)-based models appears feasible. The required parameters selected and analyzed from the literature depend on the hydrogeological characteristics. This study intends to investigate and improve the proposed parameters and data sources upon those presented in the literature. A total of 17 hydrogeological units of concern was delineated from 105 complex geological formations of the geological sections and main rock types. The other parameters related to groundwater potential were derived from the digital elevation model and Landsat imagery. In addition, 118 drilling cores were inspected and in-situ well yield data from 72 wells were employed to assess the normalized groundwater potential index in the raster-based empirical GIS model with a higher spatial resolution. The results show that the accuracy of the interpretation of groundwater potential sites improved from 48.6% to 84.7%. The three-dimensional (3D) visualization of a thematic map integrated with satellite imagery is useful as a cost-effective approach for assessing groundwater potential.

Funder

Central Geological Survey, Ministry of Economic Affairs

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3