Computer-Aided Bacillus Detection in Whole-Slide Pathological Images Using a Deep Convolutional Neural Network

Author:

Lo Chung-MingORCID,Wu Yu-HungORCID,Li Yu-Chuan (Jack),Lee Chieh-Chi

Abstract

Mycobacterial infections continue to greatly affect global health and result in challenging histopathological examinations using digital whole-slide images (WSIs), histopathological methods could be made more convenient. However, screening for stained bacilli is a highly laborious task for pathologists due to the microscopic and inconsistent appearance of bacilli. This study proposed a computer-aided detection (CAD) system based on deep learning to automatically detect acid-fast stained mycobacteria. A total of 613 bacillus-positive image blocks and 1202 negative image blocks were cropped from WSIs (at approximately 20 × 20 pixels) and divided into training and testing samples of bacillus images. After randomly selecting 80% of the samples as the training set and the remaining 20% of samples as the testing set, a transfer learning mechanism based on a deep convolutional neural network (DCNN) was applied with a pretrained AlexNet to the target bacillus image blocks. The transferred DCNN model generated the probability that each image block contained a bacillus. A probability higher than 0.5 was regarded as positive for a bacillus. Consequently, the DCNN model achieved an accuracy of 95.3%, a sensitivity of 93.5%, and a specificity of 96.3%. For samples without color information, the performances were an accuracy of 73.8%, a sensitivity of 70.7%, and a specificity of 75.4%. The proposed DCNN model successfully distinguished bacilli from other tissues with promising accuracy. Meanwhile, the contribution of color information was revealed. This information will be helpful for pathologists to establish a more efficient diagnostic procedure.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3