Abstract
A terahertz (THz) thermal sensor has been developed by using a periodically corrugated gold waveguide. A defect was positioned in the middle of this waveguide. The periodicities of waveguides can result in Bragg and non-Bragg gaps with identical and different transverse mode resonances, respectively. Due to the local resonance of the energy concentration in the inserted tube, a non-Bragg defect state (NBDS) was observed to arise in the non-Bragg gap. It exhibited an extremely narrow transmission peak. The numerical results showed that by using the here proposed waveguide structure, a NBDS would appear at a resonance frequency of 0.695 THz. In addition, a redshift of this frequency was observed to occur with an increase in the ambient temperature. It was also found that the maximum sensitivity can reach 11.5 MHz/K for an optimized defect radius of 0.9 times the mean value of the waveguide inner tube radius, and for a defect length of 0.2 (or 0.8) times the corrugation period. In the present simulations, a temperature modification of the Drude model was also used. By using this model, the thermal sensing could be realized with an impressive sensitivity. This THz thermal sensor is thereby very promising for applications based on high-precision temperature measurements and control.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献