Programming Real-Time Sound in Python

Author:

De Pra YuriORCID,Fontana FedericoORCID

Abstract

For its versatility, Python has become one of the most popular programming languages. In spite of its possibility to straightforwardly link native code with powerful libraries for scientific computing, the use of Python for real-time sound applications development is often neglected in favor of alternative programming languages, which are tailored to the digital music domain. This article introduces Python as a real-time software programming tool to interested readers, including Python developers who are new to the real time or, conversely, sound programmers who have not yet taken this language into consideration. Cython and Numba are proposed as libraries supporting agile development of efficient software running at machine level. Moreover, it is shown that refactoring few critical parts of the program under these libraries can dramatically improve the performances of a sound algorithm. Such improvements can be directly benchmarked within Python, thanks to the existence of appropriate code parsing resources. After introducing a simple sound processing example, two algorithms that are known from the literature are coded to show how Python can be effectively employed to program sound software. Finally, issues of efficiency are mainly discussed in terms of latency of the resulting applications. Overall, such issues suggest that the use of real-time Python should be limited to the prototyping phase, where the benefits of language flexibility prevail on low latency requirements, for instance, needed during computer music live performances.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. Rethinking the Computer Music Language: SuperCollider

2. Survey of audio programming tools

3. Programming Languages: A Survey;Krishan Kumar;Int. J. Recent Innov. Trends Comput. Commun.,2017

4. Python is Now the Most Popular Introductory Teaching Language at Top U.S. Universitieshttps://cacm.acm.org/blogs/blog-cacm/176450

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interacting with Digital Audio Effects Through a Haptic Knob with Programmable Resistance;2021 24th International Conference on Digital Audio Effects (DAFx);2021-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3