Encoding Text Information with Graph Convolutional Networks for Personality Recognition

Author:

Wang ZheORCID,Wu Chun-HuaORCID,Li Qing-BiaoORCID,Yan Bo,Zheng Kang-Feng

Abstract

Personality recognition is a classic and important problem in social engineering. Due to the small number and particularity of personality recognition databases, only limited research has explored convolutional neural networks for this task. In this paper, we explore the use of graph convolutional network techniques for inferring a user’s personality traits from their Facebook status updates or essay information. Since the basic five personality traits (such as openness) and their aspects (such as status information) are related to a wide range of text features, this work takes the Big Five personality model as the core of the study. We construct a single user personality graph for the corpus based on user-document relations, document-word relations, and word co-occurrence and then learn the personality graph convolutional networks (personality GCN) for the user. The parameters or the inputs of our personality GCN are initialized with a one-hot representation for users, words and documents; then, under the supervision of users and documents with known class labels, it jointly learns the embeddings for users, words, and documents. We used feature information sharing to incorporate the correlation between the five personality traits into personality recognition to perfect the personality GCN. Our experimental results on two public and authoritative benchmark datasets show that the general personality GCN without any external word embeddings or knowledge is superior to the state-of-the-art methods for personality recognition. The personality GCN method is efficient on small datasets, and the average F1-score and accuracy of personality recognition are improved by up to approximately 3.6% and 2.4–2.57%, respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3