Experimental and Numerical Testing of Ambient Temperature Impact on Lifespans of Cuffs of Vehicles’ Steering Systems

Author:

Vujadinović Radoje,Pajković Vladimir,Simović Sreten,Damjanović Milanko,Nikčević Petar

Abstract

The steering system represents one of the most important systems of active safety in vehicles. The process of a steering system failure usually starts with the failure of its protective element (cuff). Numerous factors influence a cuff’s lifespan, but the research subject of this paper is the impact of ambient temperature. The goal of this research is the experimental verification of the finding that vehicles used in northern areas require more frequent interventions in their steering systems than vehicles used in the south. A simulator performing a motion similar to the work of a cuff during a vehicle’s motion was made for the purpose of the research. A refrigerating chamber where cuffs were tested at temperatures from −4 °C to −20 °C was also made. A numerical analysis, with the ANSYS software environment, was also carried out. The numerical analysis shows that the failure of a cuff could be expected at almost the same point at which it was experimentally proven. Therefore, the failure, namely the breaking of a cuff, is not only a consequence of the material’s fatigue due to a big number of oscillations, but it also depends upon the impact of ambient temperature where the vehicle is used.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. Motor Vehicles I—Fundamentals of Motor Vehicles;Nikolić,2006

2. Automotive Suspension and Steering Systems;Knowles,2002

3. Physical Test Methods for Elastomers;Brown,2018

4. Fatigue life prediction using multiaxial energy calculations with the mean stress effect to predict failure of linear and nonlinear elastic solids

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3