Finding Minimal Optimal Indent Separation for Polystyrene via Instrumental Nanoindentation and FEA Method

Author:

Jiang Chulin,Davis Michael,Zekonyte JurgitaORCID

Abstract

Nanoindentation became a standard non-destructive technique to measure mechanical properties at the submicron scale of various materials. A set of empirical rules were established to guarantee the validity of the results. One of those rules is the separation between individual indents that should be 20–30 times maximum indentation depth. This paper investigates the influence of the distance between indents on the accuracy of mechanical properties for polystyrene with a view to determine minimum optimal separation that is needed to measure various material properties. A series of different depths with three different orientations was considered through both the experimental and finite element method to explore the relationship between the distance and indentation depth. Both methods demonstrated that hardness and modulus values for polystyrene keep stable with the distance approximately 15 times the maximum indentation depth for the matrix type set up, and nominal separation of 10 is enough when indents are executed in a single row or column.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

1. Nanoindentation;Fischer-Cripps,2011

2. Nanoindentation of coatings

3. Applied Nanoindentation in Advanced Materials,2017

4. Nanoindentation of biological materials

5. Nanoindentation Behavior of Clay/Poly(Ethylene Oxide) Nanocomposites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3