Long- and Short-Term Exposures to PM10 Can Shorten Telomere Length in Individuals Affected by Overweight and Obesity

Author:

Carugno MicheleORCID,Borroni Elisa,Fedrizzi Luca,Hoxha MirjamORCID,Vigna LuisellaORCID,Consonni DarioORCID,Bollati ValentinaORCID,Pesatori Angela CeciliaORCID

Abstract

Reduced telomere length (TL) has been associated with increased risk of age-related diseases, most likely through oxidative stress and inflammation, which have also been claimed as mechanisms underlying health effects of air pollution exposure. We aimed to verify whether exposure to particulate matter with diameter ≤10 µm (PM10) affects TL. We recruited 1792 participants with overweight/obesity in Milan (Italy) in 2010–2015 who completed a structured questionnaire on sociodemographic data, gave a blood sample for TL measurement by real-time PCR, and were assigned air pollution and meteorological data of their residential address. In multivariate mixed-effects linear models (with a random intercept on PCR plate), we observed a −0.51% change in TL (95% confidence interval (CI): −0.98; −0.05)) per 10 µg/m3 increase in PM10 at the day of recruitment. A similar decreasing trend in TL was observed up to two weeks before withdrawal, with percentage changes as low as −1.53% (average exposure of the 12 days before recruitment). Mean annual exposure to PM10 was associated with −2.57% TL reduction (95%CI: −5.06; −0.08). By showing consistent associations between short- and long-term PM10 exposures and reduced TL, our findings shed light on the potential mechanisms responsible for the excess of age-related diseases associated with air pollution exposure.

Funder

European Research Council

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3