Update on the Phylodynamics of SADS-CoV

Author:

Scarpa FabioORCID,Sanna DariaORCID,Azzena Ilenia,Cossu PieroORCID,Giovanetti Marta,Benvenuto Domenico,Coradduzza ElisabettaORCID,Alexiev IvailoORCID,Casu MarcoORCID,Fiori Pier LuigiORCID,Ciccozzi Massimo

Abstract

Coronaviruses are known to be harmful and heterogeneous viruses, able to infect a large number of hosts. Among them, SADS-CoV (Swine Acute Diarrhea Syndrome Coronavirus), also known as PEAV (Porcine Enteric Alphacoronavirus), or SeA-CoV (Swine Enteric Alphacoronavirus), is the most recent Alphacoronavirus discovered, and caused several outbreaks reported in Chinese swine herds between late 2016 and 2019. We performed an upgraded phylodinamic reconstruction of SADS-CoV based on all whole genomes available on 21 June 2021. Results showed a very close relationship between SADS-CoV and HKU2-like CoV, which may represent the evolutionary intermediate step towards the present SADS-CoV. The direct progenitor of SADS-CoV is so far unknown and, although it is well known that horseshoe bats are reservoirs for Rhinolophus bat coronavirus HKU2-like (HKU2-like CoVs), the transmission path from bats to pigs is still unclear. The discrepancies in the phylogenetic position of rodent CoV, when different molecular markers were considered, corroborate the recombination hypothesis, suggesting that wild rats, which are frequent in farms, may have played a key role. The failure of the attempt at molecular dating, due to the lack of a clock signal, also corroborates the occurrence of a recombination event hypothesis. Zoonotic infections originating in wildlife can easily become a significant threat for human health. In such a context, due to the high recombination and cross-species capabilities of Coronavirus, SADS-CoV represents a possible high-risk pathogen for humans which needs a constant molecular monitoring.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3