Abstract
The safety of agricultural products is a guarantee of national security. The increasing variety of pesticides used on crops has led to an increasing abundance of pesticide residues in agricultural products, making pesticide residues an important factor in threatening health. Traditional indicators for evaluating the safety of agricultural products, such as pass rates and residue rates, can only qualitatively describe the level of pesticide residues. Isolated data leads to low data utilization, data is distributed between different terminals or departments and cannot be shared, while the security of private data needs to be ensured. Therefore, we propose a risk entropy model based on federated learning. The model is able to quantitatively describe the risk level of agricultural products and achieve data fusion without exposing private data in the federated learning model. In this paper, a total of 90,510 agricultural product data samples from 2015 to 2019 are collected, with each sample containing 58 indicators. The experimental results show that the developed food safety risk entropy model can quantitatively reflect the level of risk in the target region and time interval. In addition, we have developed a multidimensional data analysis tool based on federated learning, which can achieve data integration across multiple regions and departments.
Funder
key technologies for food safety big data
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献