Harvesting the Aggregate Computing Power of Commodity Computers for Supercomputing Applications

Author:

Regassa DerejeORCID,Yeom Heonyoung,Son Yongseok

Abstract

Distributed supercomputing is becoming common in different companies and academia. Most of the parallel computing researchers focused on harnessing the power of commodity processors and even internet computers to aggregate their computation powers to solve computationally complex problems. Using flexible commodity cluster computers for supercomputing workloads over a dedicated supercomputer and expensive high-performance computing (HPC) infrastructure is cost-effective. Its scalable nature can make it better employed to the available organizational resources, which can benefit researchers who aim to conduct numerous repetitive calculations on small to large volumes of data to obtain valid results in a reasonable time. In this paper, we design and implement an HPC-based supercomputing facility from commodity computers at an organizational level to provide two separate implementations for cluster-based supercomputing using Hadoop and Spark-based HPC clusters, primarily for data-intensive jobs and Torque-based clusters for Multiple Instruction Multiple Data (MIMD) workloads. The performance of these clusters is measured through extensive experimentation. With the implementation of the message passing interface, the performance of the Spark and Torque clusters is increased by 16.6% for repetitive applications and by 73.68% for computation-intensive applications with a speedup of 1.79 and 2.47 respectively on the HPDA cluster. We conclude that the specific application or job could be chosen to run based on the computation parameters on the implemented clusters.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference46 articles.

1. Cluster computing: High-performance, high-availability, and high-throughput processing on a network of computers;Yeo,2006

2. Introduction to High Performance Computing for Scientists and Engineers;Hager,2010

3. A REVIEW OF HIGH PERFORMANCE COMPUTING FOUNDATIONS FOR SCIENTISTS

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A methodology for performance estimation of bot-based applications for natural disasters;Simulation Modelling Practice and Theory;2024-07

2. Macaw: The Machine Learning Magnetometer Calibration Workflow;2022 IEEE International Conference on Data Mining Workshops (ICDMW);2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3